From Network Reliability to the Ising Model: A Parallel Scheme for Estimating the Joint Density of States

نویسندگان

  • Yihui Ren
  • Stephen Eubank
  • Madhurima Nath
چکیده

Network reliability is the probability that a dynamical system composed of discrete elements interacting on a network will be found in a configuration that satisfies a particular property. We introduce a reliability property, Ising feasibility, for which the network reliability is the Ising model's partition function. As shown by Moore and Shannon, the network reliability can be separated into two factors: structural, solely determined by the network topology, and dynamical, determined by the underlying dynamics. In this case, the structural factor is known as the joint density of states. Using methods developed to approximate the structural factor for other reliability properties, we simulate the joint density of states, yielding an approximation for the partition function. Based on a detailed examination of why naïve Monte Carlo sampling gives a poor approximation, we introduce a parallel scheme for estimating the joint density of states using a Markov-chain Monte Carlo method with a spin-exchange random walk. This parallel scheme makes simulating the Ising model in the presence of an external field practical on small computer clusters for networks with arbitrary topology with ∼10^{6} energy levels and more than 10^{308} microstates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Continuous Multi-State Reliability Model with Time Dependent Component Performance Rate

A CSS1†is a system with the continues-state components. When a component has the ability to obtain all the situations from completely working to completely failed, it named continues-state component. In the real world, performance rate of elements are continuous and decrease by time. Continuity of components causes infinite working states and grows up the system states. In this paper we propose...

متن کامل

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

A Fire Ignition Model and Its Application for Estimating Loss due to Damage of the Urban Gas Network in an Earthquake

Damage of the urban gas network due to an earthquake can cause much loss including fire-induced loss to infrastructure and loss due to interruption of gas service and repairing or replacing of network elements. In this paper, a new fire ignition model is proposed and applied to a conventional semi-probabilistic model for estimating various losses due to damage of an urban gas network in an eart...

متن کامل

Relative Efficiency Measurement of Banks Using Network DEA Model in Uncertainty Situation

Traditional DEA method considered decision making units (DMUs) as a black box, regardless of their internal structure and appraisal performance with respect to the final inputs and outputs of the units. However, in many real systems we have internal structure. For this reason, network DEA models have been developed. Parallel network DEA models are a special variation which inputs of unit alloca...

متن کامل

Reliability-Based Robust Multi-Objective Optimization of Friction Stir Welding Lap Joint AA1100 Plates

The current paper presents a robust optimum design of friction stir welding (FSW) lap joint AA1100 aluminum alloy sheets using Monte Carlo simulation, NSGA-II and neural network. First, to find the relation between the inputs and outputs a perceptron neural network model was obtained. In this way, results of thirty friction stir welding tests are used for training and testing the neural network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E

دوره 94 4-1  شماره 

صفحات  -

تاریخ انتشار 2016